3.3.24 \(\int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [224]

3.3.24.1 Optimal result
3.3.24.2 Mathematica [A] (verified)
3.3.24.3 Rubi [A] (verified)
3.3.24.4 Maple [A] (verified)
3.3.24.5 Fricas [A] (verification not implemented)
3.3.24.6 Sympy [F(-1)]
3.3.24.7 Maxima [B] (verification not implemented)
3.3.24.8 Giac [F]
3.3.24.9 Mupad [B] (verification not implemented)

3.3.24.1 Optimal result

Integrand size = 25, antiderivative size = 153 \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {12 a \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {16 a \sin (c+d x)}{35 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {32 a \sqrt {\sec (c+d x)} \sin (c+d x)}{35 d \sqrt {a+a \sec (c+d x)}} \]

output
2/7*a*sin(d*x+c)/d/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2)+12/35*a*sin(d*x 
+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+16/35*a*sin(d*x+c)/d/sec(d*x 
+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+32/35*a*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+ 
a*sec(d*x+c))^(1/2)
 
3.3.24.2 Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.46 \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {(76+47 \cos (c+d x)+12 \cos (2 (c+d x))+5 \cos (3 (c+d x))) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{70 d \sqrt {\sec (c+d x)}} \]

input
Integrate[Sqrt[a + a*Sec[c + d*x]]/Sec[c + d*x]^(7/2),x]
 
output
((76 + 47*Cos[c + d*x] + 12*Cos[2*(c + d*x)] + 5*Cos[3*(c + d*x)])*Sqrt[a* 
(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(70*d*Sqrt[Sec[c + d*x]])
 
3.3.24.3 Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4292, 3042, 4292, 3042, 4292, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {6}{7} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {6}{7} \left (\frac {4}{5} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} \left (\frac {4}{5} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {6}{7} \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4291

\(\displaystyle \frac {2 a \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {6}{7} \left (\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {4}{5} \left (\frac {4 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )\right )\)

input
Int[Sqrt[a + a*Sec[c + d*x]]/Sec[c + d*x]^(7/2),x]
 
output
(2*a*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + (6* 
((2*a*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (4 
*((2*a*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + ( 
4*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])))/5))/ 
7
 

3.3.24.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 
3.3.24.4 Maple [A] (verified)

Time = 1.33 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.47

method result size
default \(\frac {2 \left (5 \cos \left (d x +c \right )^{3}+6 \cos \left (d x +c \right )^{2}+8 \cos \left (d x +c \right )+16\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{35 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(72\)

input
int((a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 
output
2/35/d*(5*cos(d*x+c)^3+6*cos(d*x+c)^2+8*cos(d*x+c)+16)*(a*(1+sec(d*x+c)))^ 
(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)
 
3.3.24.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.58 \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (5 \, \cos \left (d x + c\right )^{4} + 6 \, \cos \left (d x + c\right )^{3} + 8 \, \cos \left (d x + c\right )^{2} + 16 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{35 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

input
integrate((a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")
 
output
2/35*(5*cos(d*x + c)^4 + 6*cos(d*x + c)^3 + 8*cos(d*x + c)^2 + 16*cos(d*x 
+ c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c 
) + d)*sqrt(cos(d*x + c)))
 
3.3.24.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(7/2),x)
 
output
Timed out
 
3.3.24.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 293 vs. \(2 (129) = 258\).

Time = 0.38 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.92 \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (105 \, \cos \left (\frac {6}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 35 \, \cos \left (\frac {4}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 7 \, \cos \left (\frac {2}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) - 105 \, \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {6}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) - 35 \, \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {4}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) - 7 \, \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {2}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 10 \, \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 7 \, \sin \left (\frac {5}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 35 \, \sin \left (\frac {3}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 105 \, \sin \left (\frac {1}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right )\right )} \sqrt {a}}{280 \, d} \]

input
integrate((a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")
 
output
1/280*sqrt(2)*(105*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2 
*c)))*sin(7/2*d*x + 7/2*c) + 35*cos(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos( 
7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 7*cos(2/7*arctan2(sin(7/2*d*x + 
7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 105*cos(7/2*d*x + 7/ 
2*c)*sin(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) - 35*cos 
(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2* 
c))) - 7*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/ 
2*d*x + 7/2*c))) + 10*sin(7/2*d*x + 7/2*c) + 7*sin(5/7*arctan2(sin(7/2*d*x 
 + 7/2*c), cos(7/2*d*x + 7/2*c))) + 35*sin(3/7*arctan2(sin(7/2*d*x + 7/2*c 
), cos(7/2*d*x + 7/2*c))) + 105*sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), cos( 
7/2*d*x + 7/2*c))))*sqrt(a)/d
 
3.3.24.8 Giac [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {a \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(7/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.24.9 Mupad [B] (verification not implemented)

Time = 14.86 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.61 \[ \int \frac {\sqrt {a+a \sec (c+d x)}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (140\,\sin \left (c+d\,x\right )+42\,\sin \left (2\,c+2\,d\,x\right )+12\,\sin \left (3\,c+3\,d\,x\right )+5\,\sin \left (4\,c+4\,d\,x\right )\right )}{140\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

input
int((a + a/cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(7/2),x)
 
output
(cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x)) 
^(1/2)*(140*sin(c + d*x) + 42*sin(2*c + 2*d*x) + 12*sin(3*c + 3*d*x) + 5*s 
in(4*c + 4*d*x)))/(140*d*(cos(c + d*x) + 1))